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Abstract. We describe one-dimensional (1D) photonic crystals that support
a guided mode suitable for atom trapping within a unit cell, as well as a
second probe mode with strong atom–photon interactions. A new hybrid trap
is analyzed that combines optical and Casimir–Polder forces to form stable
traps for neutral atoms in dielectric nanostructures. By suitable design of the
band structure, the atomic spontaneous emission rate into the probe mode can
exceed the rate into all other modes by more than tenfold. The unprecedented
single-atom reflectivity r0 & 0.9 for the guided probe field should enable diverse
investigations of photon-mediated interactions for 1D atom chains and cavity
quantum electrodynamics.
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1. Introduction

New opportunities in atomic, molecular and optical (AMO) physics and quantum information
science emerge from the capability to achieve strong radiative interactions between single
atoms and the fields of nanoscopic optical waveguides and resonators [1]. For example,
strong atom–photon interactions in lithographic structures [2–6] could be used to create
quantum optical circuits with long-range atom–atom interactions mediated by single photons
[7, 8]. Moreover, linear arrays of atoms radiatively coupled to nanophotonic waveguides
exhibit a wide range of remarkable phenomena, including coherent transport of atomic
emission [9–11], guided superradiance and polaritons [12–14], as well as highly reflecting
atomic mirrors [15, 16]. The interplay of atomic emission into the waveguide and photon-
mediated forces can lead to self-organization of atoms into exotic spatial configurations along
the waveguide [17, 18].

A long-standing obstacle to this scientific frontier is the challenge of trapping atoms in
vacuum near dielectric surfaces (∼100 nm) while at the same time achieving strong interactions
between one atom and photon. A far-off resonance dipole-force trap (FORT) [19] can provide
atomic localization by using modes of the dielectric for optical trapping [20–22] and has been
used to trap cold atoms within hollow-core optical fibers [23–26] and external to fiber-taper
waveguides [27–29].

Motivated by these advances, in this paper we present principles for the design of
optical traps and strong atom–photon interactions in one-dimensional (1D) photonic crystal
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Figure 1. (a) Schematic for the single nanobeam structure with dimensions
(a, w, t, hx , h y) = (367, 845, 825, 246, 745) nm. (b) Band diagram for the single
nanobeam in (a) showing only bands with even vector symmetry about the y
and z symmetry planes. The trapping and probing bands are shown as thicker
lines, with the trap ωT/2π (probe ωA/2π ) frequency as a blue (red) dashed line.
(c) Field intensity of the blue trapping mode and (d) field amplitude of the probe
mode in the center plane z = 0 for the single nanobeam in (a). Green spheres
mark the locations of minima of the trapping potential. (e) Schematic for the
double nanobeam structure with (a, w, t, d, g) = (335, 335, 200, 116, 250) nm.
(f) Band diagram for the double nanobeams in (e) displaying only modes of even
vector symmetry in z. The proximity of the two nanobeams results in a band
structure composed of even (green) and odd (magenta) superpositions of single
nanobeam modes. We focus on the even parity supermodes due to their large field
amplitude in the gap. (g) Field intensity of the blue trapping mode and (h) field
amplitude of the probe mode in the center plane z = 0 of the double nanobeams
in (e). The black diamonds in (b) (f) mark resonances for finite structures of
81 unit cells from figures 4 and 5).

waveguides. Our choice of 1D waveguides is based on their simple photonic band structures
and their compatibility with current laser cooling and trapping technology [27–29].

We analyze the trap potential Utot(r) due to light-shifts from a FORT [30–32] together
with Casimir–Polder (CP) interactions with the dielectric [33–36] (figures 1(a) and (e)).
Despite the proximity of the surfaces, stable potentials Utot(r) are achieved for modest optical
intensities (∼5 mW µm−2) for blue-detuned FORTs operated at a ‘magic’ wavelength for
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the D2 line of atomic cesium [19]. A new possibility for trapping is also identified for
which vacuum forces from CP interactions are exploited to close the trap perpendicular to
the plane of structure, which would otherwise be unstable with either the FORT or the CP
potential alone [37].

In addition to the waveguide trapping properties, strong near-resonance atom–photon
interactions of trapped atoms are found to arise for waveguides with properly tailored band
structure [38–42]. For practically realizable structures, we find γ1D/γ ′ & 10, where γ1D is the
atomic decay rate into the (guided) probe mode and γ ′ the rate into all other modes. One
atom trapped within the structure could thereby attenuate a resonant probe with transmission
|1 − r0|

2 . 10−2 [9, 16].

2. Design principles for the one-dimensional photonic crystal waveguides

As illustrated in figure 1, we focus on two of the simplest quasi-1D photonic crystal geometries.
The first waveguide consists of a single silicon-nitride nanobeam (refractive index n = 2) with
a 1D array of filleted rectangular holes along the propagation direction; atoms are trapped in the
centers of the holes (figure 1(a)). The second waveguide consists of two parallel silicon nitride
nanobeams, each with a periodic array of circular holes, with atoms trapped in the gap between
the beams (figure 1(e)).

The design of a 1D-photonic crystal waveguide with distinct modes for optical trapping
and strong atom–photon interactions is constrained by the region of the optical band structure
containing a continuum of unguided optical modes (i.e. the light cone indicated in gray
in figures 1(b) and (f)). Modes within the light cone can still have large amplitude in the
structure but radiate energy into the surrounding vacuum leading to unacceptable loss. The
top of the vacuum light line is at the Brillouin zone boundary (X -point, where kxa = π ),
so the lattice constant a is constrained by a < λ/2, where λ is the smaller of the (vacuum)
wavelengths for trapping and probe fields. Here, kx is the Bloch wavevector along the waveguide
axis x .

Once a is fixed, additional guided modes can be ‘pulled’ below the light line by increasing
the width and thickness of the structure. With appropriate modes below the light line for probing
and trapping, the spacing of these modes at the X -point can be tuned by altering the size of
the holes, which enables the probe mode to be resonant with the frequency ωA of the atomic
transition while simultaneously matching the optical frequency ωT of the trap mode to a ‘magic’
frequency for the atom [19].

3. Optical trapping and surface Casimir–Polder potential inside the 1D-waveguides

Within this general context, here we consider only blue-detuned FORTs for which the trapping
mode has an intensity minimum at the trapping site7. Our analysis is for the D2 line of atomic Cs
with probe wavelength near the atomic resonance λA = 852 nm and with a blue-detuned FORT
at the magic wavelength λT = 793 nm [19]. Note that our results are readily transcribed to other
atomic transitions by way of the scale invariance of Maxwell’s equations [43].

The photonic crystals are assumed to be suspended in vacuum and composed of SiN.
Band structures are calculated using the MIT photonic-bands (MPB) software package [44].

7 We have also designed structures for trap and probe modes for red-detuned FORTs with an atom trapped at the
intensity maximum in a unit cell.
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Figure 2. Trapping potentials for the single nanobeam structure in figure 1(a)
for Cs 6S1/2, F = 4 level and λT = 793 nm. (a) CP potential UCP(r) and (b) total
potential Utot(r) = UCP(r) + UFORT(r) in the central z = 0 plane. Panels (c)–(e)
show line cuts of UCP (red solid), UFORT (blue dashed) and Utot (blue solid)
along the (c) x-, (d) y- and (e) z-axis. Average trap intensity for a unit cell is
4.9 mW µm−2.

Field profiles for guided modes are calculated using the finite-element-method simulations8.
Results for the single and double nanobeam structures are presented in figure 1.

With suitable guided modes for trapping in hand, we have developed numerical tools for
evaluating the FORT and CP potentials inside the waveguide, and hence the total potential
Utot = UFORT + UCP. The adiabatic potential UFORT(r) is readily calculated using the electric field
distribution of the trap mode, E(r) = ukx (r) eikx x [30–32]; ukx (r) is the periodic Bloch wave
function at kx .

The surface potential UCP(ra) is determined from the formalism in [35] for the imaginary
component of the scattering Green’s tensor Gsc(ra, ra, ω) from Maxwell’s equations for a point
dipole at the atomic location ra with the vacuum contribution (i.e. no dielectric structure)
subtracted. We evaluate Gsc(ra, ra, ω) numerically by adapting the procedures from [36] (see
appendix A).

Figures 2 and 3 display numerical results for UCP(r), UFORT(r) and Utot(r) for the single
and double nanobeams for kx below the X -point. The calculations are for the 6S1/2, F = 4
hyperfine ground state of Cs for the FORT modes indicated in figures 1(c) and (g)9. For these

8 COMSOL Multiphysics (http://comsol.com/).
9 Utot(r) is largely insensitive to the particular atomic Zeeman sublevel owing to negligible vector shifts due to the
high degree of linear polarization of the trapping modes and to the absence of ground state tensor polarizability.
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Figure 3. Trapping potentials for the double nanobeam structure in figure 1(e)
for Cs 6S1/2, F = 4 level and λT = 793 nm. (a) CP potential UCP(r) and (b) total
potential Utot(r) = UCP(r) + UFORT(r) in the transverse x = 0 plane. Panels
(c)–(e) show line cuts of UCP (red solid), UFORT (blue dashed) and Utot (blue
solid) along the (c) x-, (d) y- and (e) z-axis. Average trap intensity for a unit cell
is 3.5 mW µm−2.

initial calculations, we make the reasonable assumption for SiN that the dielectric constant ε

is frequency independent, ε(r, ω) → ε(r); see appendix A.1 for the justification by numerical
evaluation of UCP(r) using the full frequency dependence of ε(ω) for SiN at several locations.

3.1. Stable optical trapping in a single nanobeam

Utot(r) for the single nanobeam in figure 2 reveals that modest optical intensity is sufficient
to overcome the attractive CP interactions and create a stable potential in the center of the
vacuum space at rmin = 0 within a unit cell. An atom would be localized at distances (dx , dy) =

(123, 373) nm from the walls of the dielectric. The trap oscillation frequencies for a Cs atom
would be ( fx , fy, fz) ' (612, 180, 484) kHz.

3.2. A new hybrid trap in double nanobeams: utilizing vacuum Casimir–Polder force to realize
a stable trap condition

For the double nanobeams [45], the FORT alone is insufficient to trap the atom, as the mode has
a (weak) local intensity maximum along the z direction that repels an atom. However, the CP
potential UCP(r) along z provides the force necessary to overcome the repulsive optical force

New Journal of Physics 15 (2013) 083026 (http://www.njp.org/)
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and to form a stable trap. The result is a hybrid optical–vacuum trap that circumvents the ‘no-go’
theorem for vacuum trapping alone [37].

Potentials for our hybrid trap are illustrated in figure 3. At the trap minimum rmin = 0, an
atom would be localized at distance dy = 125 nm from adjacent surfaces of the dielectric beams.
Oscillation frequencies for a Cs atom would be ( fx , fy, fz) ' (1013, 390, 57) kHz.

4. Achieving strong atom–photon interactions via guided modes near a photonic
band edge

As concerns strong radiative interactions, our structures trap an atom in a region of large
amplitude for the probe field, leading to small mode volume per unit cell (appendix E).
Atom–photon interactions can be further enhanced near a band edge [38–42], where the
density of states diverges due to a van Hove singularity. To quantify the radiative coupling,
we determine the decay rate γtot for a point dipole located at ra = 0 for a structure
with N unit cells10. Finite-difference-time-domain (FDTD) calculations are performed to
evaluate the classical Green’s tensor G(ra, ra, ω) and thence γtot following [34, 35, 46]
(appendix B).

4.1. Green’s tensor and atomic spontaneous emission inside the 1D-waveguide

Figures 4(a) and 5(a) display the diagonal components Im[G i i(νd)] of the Green’s tensor as
functions of dipole frequency νd = ωd/2π and relate to the emission rate of resonant point
dipoles polarized along the i =x-, y- or z-axis for the single and double nanobeams. Firstly, in
figure 4(a), Im[G i i ] is enhanced along the x (periodic) direction across a broad frequency range,
and is suppressed in the y and z directions, as can be explained by the orientation of the induced
array of image dipoles along the single nanobeam.

Secondly, figures 4(a) and 5(a) display a series of resonant peaks due to strong emission
into various guided modes. In the region near the Cs D2 line (i.e. νd ' νA = ωA/2π = 352 THz),
we find peaks in Im[Gxx ] for the single nanobeam and in Im[G yy] for the double nanobeams.
These peaks are due to emission into our designated probe modes for the respective structures,
where for the single (double) nanobeam(s), the probe mode is principally polarized along the
x-(y-) axis. Each peak is from a discrete set of propagation constants k(n)

x ' πn/aN imposed
by the boundary conditions for the finite structures. Here, N is the total number of cells in the
single (double) beam, and n 6 N is an even (odd) integer. We find excellent agreement between
the frequencies of these resonances and the band diagram of the probe mode (‘diamonds’ in
figures 1(b) and (f)) for various (n, N ).

The peaks become larger and narrower as k(n)
x approaches the X -point, owing to the

diminishing group velocity [40, 42]. Beyond the X -point, the probe resonances disappear,
leaving a broad background corresponding to coupling into lossy (radiation) modes.

On an expanded frequency scale around νd ' νA, figures 4(b) and 5(b) show calculated
atomic decay rates γtot for the 6P3/2, F′

= 5 → 6S1/2, F = 4 transition in atomic Cs (appendix B).
When the atomic dipole is aligned along the principal polarization of the designated probe
mode (x̂—single beam; ŷ—double beam), the emission rate γ1D into the probe mode is strongly

10 A finite number of unit cells is chosen to better represent an actual structure. Since our focus is not on specific
boundaries, the structure is terminated by vacuum.

New Journal of Physics 15 (2013) 083026 (http://www.njp.org/)



8

γ

344 348 352 356
0

5

10

15

200 250 300 350 400 450

1

10

d (THz)

to
t

0

m’
F

= 0

(THz)

(b)

(THz)

Im
[G

ii
]/

Im
[G

0
]

(a)

y
x
z

y
x

(c)

340 350 360
0

4

8

m’
F

= 5

ν
d

ν

d
ν

γ
/

γ to
t

0γ
/

Figure 4. Green’s tensor and total atomic decay rate γtot versus source dipole
frequency νd for the single nanobeam at r = 0. Panel (a) shows the diagonal
components of the Green’s tensor, Im[Gxx ] (solid black), Im[G yy] (red) and
Im[Gzz] (blue), normalized to the free space value Im[G0] (dashed line). The
number of unit cells is N = 81. Cesium D2-line frequency νA = 352 THz is
centered in the shaded area. The vertical dotted line marks the light line, beyond
which all decay channels are lossy. Panels (b) and (c) show γtot (black curves),
normalized to the free space value γ0 (dotted line), in the frequency range marked
by the shaded area in (a). The solid (dashed) curve is evaluated using 81(61) unit
cells. The atomic spin is aligned to the x-axis, with the spin projection quantum
number (b) m ′

F = 0 and (c) m ′

F = 5.

enhanced at frequencies corresponding to k(n)
x near the X -point. Specifically, for νd = νA large

enhancements in γ1D occur for the initial excited state 6P3/2, F′
= 5, m ′

F = 0, while γ1D is
suppressed for the initial state m ′

F = 5. This is because the probe mode predominantly supports
π -polarization and hence 1mF = 0. Coupling between states with 1mF 6= 0 is small. Of course,
additional guided modes can contribute to γtot, as is evidenced for the m ′

F = 5 state due to field
polarizations perpendicular to the atomic spin, such as ẑ (x̂) for the single (double) beam(s) in
figure 4(a) (figure 5(a)).

4.2. Enhanced probe-mode coupling rate γ1D and the resulting strong atom–photon interaction

From γtot(νd) and an analytic model of coupling to the guided-mode near the X -point, we
estimate the contributions of γ1D and γ ′ to γtot = γ1D + γ ′ near the largest resonances in
figures 4(b) and 5(b) (appendix D.1). For m ′

F = 0 and N = 81, we find that γ1D/γ0 ' 15
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F = 5.

and γ ′/γ0 ' 1.2 for the single nanobeam, while γ1D/γ0 ' 21 and γ ′/γ0 ' 1.0 for the double
nanobeams11. Here, γ0/2π = 5.2 MHz, the free-space Cs decay rate.

The ratios γ1D/γtot and γ1D/γ ′ serve as metrics for the strength of atom–photon interactions
for our 1D photonic crystals. For example, the resonant reflectivity r0 of a trapped atom for
the probe field should scale as r0 = γ1D/γtot [9, 16], which for the double nanobeams leads
to r0 ' 0.95. For a cavity quantum electrodynamics (QED) system with one ‘impurity’ atom
surrounded by NA ‘mirror’ atoms along a 1D-lattice [16], the ratio of the coherent coupling
rate g1 =

√
NAγ1D/2 to the effective dissipative rate γ ′ would exceed unity even for NA = 1

atom. For conventional cavity QED, we estimate a 1-photon Rabi frequency ∼2π × 2 GHz for
figure 5(b) with N = 81.

11 For comparison, γ1D/γ0 ' 0.06 is the state of the art for a Cs atom trapped near an SiO2 nanofiber [29].
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5. Conclusion

Certainly there are challenges in the implementation of our designs, including atom loading
into the small trap volumes and light scattering from device imperfections. The latter can
reduce the expected coupling rate γ1D and introduce trap imperfections. The former challenge
may be resolved either by loading atoms continuously from an atomic reservoir surrounding
the nanostructure [27–29] to improve the loading efficiency, or by using a moving optical
lattice to transfer atoms precisely into the trapping sites. We are working to address these
issues by numerical simulation, device fabrication and cold-atom experiments with nanoscopic
structures. Our efforts are motivated by the prediction γ1D/γtot & 0.9 in figures 4 and 5, which
is unprecedented in AMO physics and which could create new scientific opportunities (e.g.
quantum many-body physics for 1D atom chains with photon-mediated interactions, and high-
precision studies of vacuum forces). Moreover, our double nanobeam structure provides proof-
of-principle for a promising new concept that combines optical and vacuum forces to form stable
traps for neutral atoms in dielectric nanostructures.

Our designs of 1D periodic structures represent a basis for extensions to more complicated
geometries, including two-dimensional (2D) photonic crystals with trapped atoms. A step in this
direction is with structures that are still 1D in nature (e.g. a line of defect patterns embedded in
a 2D photonic band gap crystal). Such structures should offer larger values for γ1D and further
suppressions of emission rate γ ′ to other modes (including the vacuum).
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Appendix A. Calculation of Casimir–Polder potentials

The CP potential UCP(ra) is calculated from the following integral [35]:

UCP(ra) = −
h̄µ0

2π
Im

{∫
∞

0
dωω2 Tr[α0(ω) · Gsc(ra, ra, ω)]

}
, (A.1)

where Tr[.] denotes the trace, α0 is the dynamic polarizability tensor of ground-state cesium
atom, and Gsc(ra, ra, ω) = G(ra, ra, ω)− G0(ra, ra, ω) is the scattering Green’s tensor, that is,
the Green’s tensor G subtracted by the vacuum contribution G0 evaluated at atomic location ra;
2π h̄ is Planck’s constant, and µ0 is the vacuum permeability. The Green’s tensor is the solution
to the Maxwell equation [∇ ×∇ × −

ω2

c2 ε(r, ω)]G(r, r′, ω) = Iδ(3)(r − r′), corresponding to the
electric field response to a point dipole current source. ε(r, ω) is the dielectric function and I is
the unity tensor.

We employ FDTD calculations [48] to solve numerically for the Green’s tensors of our
structures. The integral of equation (A.1) is evaluated by adapting a procedure established
in [36] and by using a deformed contour ω(ξ) = ξ

√
1 + iσ/ξ in the upper half of the

complex frequency plane, parameterized by a real number ξ > 0 and a constant σ > 0. As
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explained in [36], this is equivalent to solving the Green’s tensor at real frequencies ξ with
a fictitious global conductivity applied to the dielectric function ε ′(r, ξ) = (1 + iσ/ξ)ε(r, ξ).
The integration can then be performed in the time domain (via the convolution theorem) and
converges quickly due to fast decay from σ .

Specifically, equation (A.1) is numerically evaluated using

UCP(ra) =
h̄

2π

∫
∞

0
dt Im

[
gµν(−t)

]
x̂µ · Esc,ν(ra, t), (A.2)

where Esc,ν(ra, t) is the (real) electric field generated by a point dipole current sourceJ = δ(t)x̂ν

(x̂ν = x̂, ŷ, ẑ) located at the position ra and scattered by a structure with a dielectric function
ε ′(r, ξ).12 Here, the indices µ and ν are repeated for summation convention, gµν(t) is the

Fourier transform of gµν(ξ) = −iξ
√

1 + iσ
ξ
(1 + iσ

2ξ
)2(ξ)α0

µν(ω(ξ)) and 2(ξ) is the Heaviside

step function.

A.1. Material dispersion

For the initial calculations, we take the dielectric constant ε to be frequency independent,
ε(r, ω) → ε(r). In principle it is important to take into account the frequency dependence of
the refractive index when calculating the CP potential. However, for the trapping of atoms at
distances of 100 nm from dielectric structures, the dominant contribution to the force comes
from the material response near the atomic resonance frequencies. This is dictated by the smooth
frequency cutoff coming from the atomic polarizability; see equation (A.1), as well as [49] for
more detailed discussions. At distances on the order of the resonant wavelengths or more (not
relevant to our calculations), the low-frequency material response would become increasingly
important [49]. Since the refractive index of silicon nitride is approximately constant across
the optical domain, we adopt the approximation based on a frequency independent dielectric
constant ε(r).

In order to fully justify our assumption, we have performed calculations using full material
dispersion, and have found the results well approximated by calculations using constant n = 2.
For the simulated material in FDTD calculations, we have taken the measured dispersion in
dc, THz [50] and optical [51] regimes and use a Lorentz oscillator model to fit the complex
refractive index ñ = n + ik; see figures (A.1a)–(b). The resulting CP potentials are shown in
figure A.1(c) for the single nanobeam structure and in figure A.1(d) for the double nanobeam
structure. Each of them differs from the values calculated with n = 2 by no more than 8% both
at the trap center and closer to the walls.

The time required for computation increases linearly with the number of Lorentz oscillators
used to model the material, and, for the nine oscillator model used here, the computation time
increases by an order of magnitude. Due to limited computational resources, we have used the
frequency independent results as a reasonable approximation when calculating the CP potential
throughout both structures.

12 To obtain the CP potential for a single atom inside a periodic structure, we impose Bloch-periodic boundary
conditions on a single unit-cell in the FDTD calculations. We then sum over all fields Esc,ν(ra, t; kx ) with the
Bloch wavevector kx across the first Brillouin zone to obtain Esc,ν(ra, t) =

a
2π

∫ π/a
−π/a dkx Esc,ν(ra, t; kx ), which is

mathematically equivalent to solving for the fields of a single point dipole in an infinite periodic structure. The
integral is approximated using a 10 point Gaussian quadrature.
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Figure A.1. Panels (a) and (b) show the real (n) and imaginary (k) refractive
indices, respectively, of silicon nitride obtained from a model of 9 Lorentz
oscillators. Panel (c) shows the CP potential calculated for the single nanobeam
structure along the x-axis. The blue line shows the calculation using a frequency
independent n = 2. At the discrete points x = −50, 0 and 50 nm, the frequency
independent results (red circles) were compared with results using the full
frequency dependent material response (black diamonds). Panel (d) shows a
similar plot along the y-axis of the double nanobeam structure.

Appendix B. Calculation of γtot

To determine the total spontaneous decay rate γtot for an atom in our structures, we also solve
for the classical Green’s tensors and evaluate γtot via [34, 35, 46]

γtot =
2µ0ω

2
j

h̄
Im

∑
{0}

Tr[D j · G(ra, ra, ω j)]

 , (B.1)

where D j = 〈{0}|d†
| j〉〈 j |d|{0}〉 is the dipole matrix element between the ground state manifold

and the excited state j , and ω j is the transition frequency. The total decay rate γtot = γ1D + γ ′

includes the decay rate γ1D to a guided mode of interest as well as the rate γ ′ to all other modes
of the structure, including lossy modes. As discussed below, the contributions of γ1D, γ ′ to γtot

can be estimated from the global frequency dependence γtot(ω).
To obtain γtot(ω), we evaluate the Green’s tensor for the real dielectric function ε(r) using

the FDTD method, followed by a discrete Fourier analysis.

Appendix C. Validation

To validate our numerical procedures, we have performed calculations of UCP for several
geometries where analytical solutions are available, including an atom near an infinite dielectric
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or metal half-space [52] and an atom located above an infinite dielectric grating [53], and found
excellent agreement between our simulations and the exact results.

We have validated our calculations of γtot for the cases of an (atomic) dipole near
an infinite dielectric, metallic parallel plates, a nanofiber [54] and 2D-photonic band-gap
microcavities [55].

Appendix D. Guided mode resonances

For our structure with an infinite number of unit cells, a guided mode (denoted by λ) contribution
to the imaginary part of the Green’s tensor can be calculated as [46, 56], Im

[
Gλ

1D(ra, ra, ω)
]
=

ac2uλ(ra; kx) ⊗ u∗

λ(ra; kx)/2ωvλ, when the frequency ω intersects the frequency band ωλ at a
propagation constant kx below the light line. Here, uλ(r; kx) is the orthonormal mode function,
and vλ is the group velocity, both available via numerical calculations [44] (see also footnote 8).
As we scan the frequency ω, Im

[
Gλ

1D

]
increases monotonically and diverges as kx approaches

the X -point, where vλ → 0. The guided mode Green’s tensor vanishes when ω lies beyond the
frequency of the band edge.

Based on this analysis, we can evaluate the decay rate γ
(∞)

1D (ω) into the designated probe
mode for an infinite structure, and compare it with the heights of resonant features in γtot(ω) for
finite structures with different numbers of unit cells, as shown in figures 4(b) and 5(b). Indeed,
the actual γ1D of a finite-size structure must deviate from γ

(∞)

1D due to boundary conditions
that transform a continuous spectrum into a discrete set of resonant peaks [40], as shown in
figures 4(b) and 5(b). When the number of unit cells is increased in our calculation of γ1D over
the range N = 11 to 81, we find that the frequencies ω(n) of the resonant peaks shift in position
and the peaks change height. As documented by the black diamonds in figures 1(b), (f), the ω(n)

arise from the discrete set of propagation constants k(n)
x ' πn/aN imposed by the boundary

conditions for the finite structures with n either even or odd.
The peaks in γtot at the set of frequencies ω(n) build up on top of a fairly constant

background within the frequency range displayed in figures 4(b) and 5(b). We assume that this
background represents the contribution of γ ′ to γtot, and subtract the background to estimate
γ1D. The resulting form for γ1D(ω) consists of a set of resonant peaks whose heights at discrete
ω(n) qualitatively map out γ

(∞)

1D calculated for the infinite structure, with the maximum peak
height for γ1D occurring for the peak closest to the band edge. Moving further away from the
band edge, we find that our numerical estimate of γtot(ω) − γ ′(ω) asymptotes to the calculated
value of γ

(∞)

1D (ω) reasonably well.

D.1. Estimation of γ1D and γ ′

From the previous discussions, we identify that the decay rate into other modes γ ′ can be read
off from the broad background in γtot. Specifically, we estimate γ ′

= γtot(ω
′) at a frequency ω′

just across the band edge and away from any resonant peak for a guided mode. The decay rate
into the probe mode γ1D can then be estimated using γ1D = γtot − γ ′.

For the single-beam structure and the atomic spin orientation shown in figure 4(b), we
find a peak total decay rate γtot/γ0 ≈ 15 and a background level γ ′/γ0 ≈ 1.2 near the cesium
D2-line frequency νA = 352 THz. We estimate the coupling to the resonant probe mode
γ1D = γtot − γ ′

≈ 14γ0. For the double-beam structure and spin orientation shown in figure 5(b),
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we find γtot/γ0 ≈ 22, γ ′/γ0 ≈ 1, and, therefore, γ1D/γ0 ≈ 21. Here, γ0/2π = 5.2 MHz is the
free-space (vacuum) decay rate for the D2 line.

Appendix E. Effective area and mode volume for probe

Both the single and double nanobeam structures lead to atom localization in a region of large
amplitude for the probe field. One measure of the strength of the atom-field coupling is the
effective mode volume Vm per unit cell, where

Vm =

∫
ε(r)|E(r)|2d3r/ε(rmin)|E(rmin)|

2. (E.1)

Here the integration is carried out over the volume of a unit cell. That is, the integration domain
along propagation direction x extends over the distance a (i.e. the lattice constant), while in the
transverse y, z directions, the integration domain is from −∞ to +∞.

For the single nanobeam, the probe mode has a global maximum at rmin = 0 and an effective
mode volume Vm ∼ 0.13 µm3. For the double nanobeams, the probe mode has a saddle-like
intensity distribution around rmin = 0, resulting in Vm ∼ 0.11 µm3 for a unit cell.
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